BLE based IoT Device – Design Considerations
This blog is the sequel of blog “Bluetooth technology”. In the previous blog “Bluetooth Technology” we discussed in detail about the basics of Bluetooth, how communication takes place and how are they classified. In this blog, we will describe in detail about various parameters and options that are available in each while designing a Bluetooth Low Energy (BLE) based IoT device.
Today we find numerous BLE enabled IoT devices emerging in market with typical applications such as wrist wearable in healthcare, Beacons & tags in retail and many more in home automation, industrial, automotives etc.
BLE SoC is an integrated chip that includes both the Microcontroller and BLE transceiver. They are also named as wireless microcontrollers. The microcontroller part includes the core, flash memory, RAM and peripherals such as GPIO, I2C, SPI, UART, timers, ADC, etc. BLE part includes RF transceiver compatible with BLE specifications (usually v4.0, v4.1 or v4.2). In addition to BLE, some of the SoC also supports IEEE 802.15.4 standard compliance which is a standard that defines the operation of low-rate wireless personal area networks (LR-WPAN). It is the basis for the ZigBee, MiWi, Thread etc.
Core: Most of the BLE SoC in the market is powered by ARM Cortex core such as Cortex-M0+, Cortex-M3 etc. There are few SoC with 8051 core also. The choice of the core depends on the nature of the application, where M3 will be a better choice for high computational performance, real time applications and M0+ for low cost yet better performance applications. Memory: All the SoC will have on-chip SRAM and Flash memory, where the size of the flash memory is of more concern which will be loaded with the application, OTA code and BLE stack. Hence selecting SoC with sufficient flash memory will be advisable. In some cases the application code and BLE stack itself will accommodate the full flash memory and there will be no more memory to support OTA. In such case, there is no other option than going for external EEPROM which adds some cents to dollars in the BoM.
Package: BLE SoC’s are available in SMD packages such as QFN and BGA. Among them QFN package is most common. The soldering process recommended for both packages by the chip vendors will be machine soldering which adds extra assembly costs. Operating conditions: The operating grade is a very important during the selection of SoC. The designed must careful in selecting the domain where the device is going to be used such as industrial, automotive, commercial or medical. For example, a commercial grade SoC is not suitable for automotive grade applications. Availability of the evaluation platforms, source code and stack ups should be verified which can support rapid product development.